As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the computed tomography image based AI diagnostic system has become a sustainable solution for early diagnosis. However, the model-wise vulnerability under adversarial perturbation hinders its deployment in practical situation. The existing adversarial training strategies are difficult to generalized into medical imaging field challenged by complex medical texture features. To overcome this challenge, we propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction. The contour prior features are injected to attention layer via a parameter regularization and we optimize the robust empirical risk with hybrid distance metric. We then introduce a new cross-nation CT scan dataset to evaluate the generalization capability of the adversarial robustness under distribution shift. Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks. The code and dataset are available at https://github.com/Quinn777/CAP.
translated by 谷歌翻译
完全监督的显着对象检测(SOD)方法取得了长足的进步,但是这种方法通常依赖大量的像素级注释,这些注释耗时且耗时。在本文中,我们专注于混合标签下的新的弱监督SOD任务,其中监督标签包括传统无监督方法生成的大量粗标签和少量的真实标签。为了解决此任务中标签噪声和数量不平衡问题的问题,我们设计了一个新的管道框架,采用三种复杂的培训策略。在模型框架方面,我们将任务分解为标签细化子任务和显着对象检测子任务,它们相互合作并交替训练。具体而言,R-NET设计为配备有指导和聚合机制的搅拌机的两流编码器模型(BGA),旨在纠正更可靠的伪标签的粗标签,而S-NET是可更换的。由当前R-NET生成的伪标签监督的SOD网络。请注意,我们只需要使用训练有素的S-NET进行测试。此外,为了确保网络培训的有效性和效率,我们设计了三种培训策略,包括替代迭代机制,小组智慧的增量机制和信誉验证机制。五个草皮基准的实验表明,我们的方法在定性和定量上都针对弱监督/无监督/无监督的方法实现了竞争性能。
translated by 谷歌翻译
边缘计算广泛用于视频分析。为了减轻准确性和成本之间的固有张力,已经提出了各种视频分析管道,以优化GPU在边缘节点上的使用。但是,我们发现,由于视频内容的变化,在管道的不同位置的视频内容变化,亚次采样和过滤,因此为边缘节点提供的GPU计算资源通常被低估了。与模型和管道优化相反,在这项工作中,我们使用非确定性和分散的闲置GPU资源研究了机会数据增强的问题。具体而言,我们提出了一个特定于任务的歧视和增强模块以及一种模型感知的对抗性训练机制,提供了一种以准确有效的方式识别和转换特定于视频管道的低质量图像的方法。在延迟和GPU资源限制下,进一步开发了多个EXIT模型结构和资源感知调度程序,以做出在线增强决策和细粒度的执行。多个视频分析管道和数据集的实验表明,通过明智地分配少量的空闲资源,这些框架上倾向于通过增强而产生更大的边际收益,我们的系统将DNN对象检测准确性提高了7.3-11.3 \%,而不会产生任何潜行成本。
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
在本文中,我们介绍了基于大型预训练的语言模型(PLM)pangu-alpha(Zeng等,2021)的中国预训练的开放域对话生成模型。与其他对大量对话数据进行培训的预训练的对话模型不同,我们旨在通过继承PLM的有价值的语言能力和知识来构建强大的对话模型,并以相对较少的数据和计算成本构建强大的对话模型。为此,我们训练大型PLM Pangu-Alpha的Pangu-bot,该机器人已被证明在各种中国自然语言任务上表现出色。我们研究了pangu-bot产生的响应的不同方面,包括响应质量,知识和安全性。我们表明,Pangu-Bot优于最先进的中国对话系统(CDIALGPT(Wang等,2020),Eva(Zhou等,2021),EVA2.0(Gu等,2022)) W.R.T.以上三个方面。我们还证明,可以轻松地部署pangu-bot,以在没有进一步训练的情况下产生情感反应。在整个经验分析中,我们还指出,Pangu-bot响应质量,知识正确性和安全性仍然远非完美,进一步的探索对于建立可靠且智能的对话系统是必不可少的。我们的型号和代码将在https://github.com/huawei-noah/pretretaining-language-model/tree/master/master/pangu-bot上提供。
translated by 谷歌翻译
随着深度学习技术的快速发展和计算能力的提高,深度学习已广泛应用于高光谱图像(HSI)分类领域。通常,深度学习模型通常包含许多可训练参数,并且需要大量标记的样品来实现最佳性能。然而,关于HSI分类,由于手动标记的难度和耗时的性质,大量标记的样本通常难以获取。因此,许多研究工作侧重于建立一个少数标记样本的HSI分类的深层学习模型。在本文中,我们专注于这一主题,并对相关文献提供系统审查。具体而言,本文的贡献是双重的。首先,相关方法的研究进展根据学习范式分类,包括转移学习,积极学习和少量学习。其次,已经进行了许多具有各种最先进的方法的实验,总结了结果以揭示潜在的研究方向。更重要的是,虽然深度学习模型(通常需要足够的标记样本)和具有少量标记样本的HSI场景之间存在巨大差距,但是通过深度学习融合,可以很好地表征小样本集的问题方法和相关技术,如转移学习和轻量级模型。为了再现性,可以在HTTPS://github.com/shuguoj/hsi-classification中找到纸张中评估的方法的源代码.git。
translated by 谷歌翻译
MEME是一个有趣的词。互联网模型为我们对世界的看法,媒体和我们自己的生活的感知的变化提供了独特的见解。如果你足够长时间冲浪互联网,你会在互联网上的某处看到它。随着社交媒体平台的兴起和方便的图像传播,图像模因已经获得了名气。图像模因已成为一种流行文化,他们在社交媒体,博客和公开信息中沟通中发挥着重要作用。随着人工智能的发展和深度学习的广泛使用,自然语言处理(NLP)和计算机视觉(CV)也可用于解决生活中的更多问题,包括MEME生成。互联网MEME通常采用图像的形式,并通过组合MEME模板(图像)和标题(自然语言句子)来创建。在我们的项目中,我们提出了一个端到端的编码器解码器架构MEME发生器。对于给定的输入句,我们使用MEME模板选择模型来确定它表达的情绪并选择图像模板。然后生成标题和模因通向MEME标题生成器。 GitHub可提供代码和模型
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译